CORRECTION DU DS N°5

Exercice n°1 : Réfraction de la lumière : 12pts

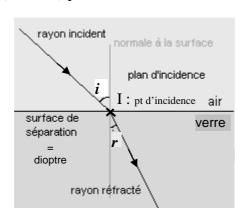
I Rayon laser:

Classe de 2nd

- 1) a. On appelle la grandeur notée λ longueur d'onde, elle caractérise la couleur de la lumière considérée.
 - b. La lumière du laser correspond à une couleur rouge.
- 2) a. C'est le phénomène de réfraction qui intervient.
 - b. On les appelle les lois de Descartes :

La première dit que le rayon réfracté et le rayon incident appartiennent à un même plan appelé plan d'incidence (il contient aussi la normale au dioptre).

La deuxième dit que si un rayon incident se propage dans l'air et arrive avec un angle i sur le dioptre, alors le rayon réfracté qui se propage dans le verre est réfracté avec un angle r vérifiant :

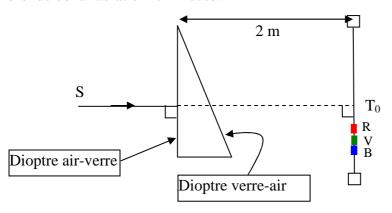

$$1 \times \sin i = n_V \times \sin r$$

3) D'après la relation écrite ci-dessus :

$$\sin r_1 = \frac{\sin i_1}{n_V} = \frac{\sin 38.0}{1.779} = 0.346... \text{ donc } r_1 = \sin^{-1}(0.346...) = 20.2^{\circ}$$

<u>Rq</u>: Les trois petits points signifient qu'il faut garder le chiffre complet donné par le premier calcul (0.346 ...) pour effectuer le deuxième calcul.

4) Schéma:


II Dispersion de la lumière :

- 1) a. On nomme ce bloc de verre un prisme.
 - b. Ce bloc dévie une lumière monochromatique.

Ce bloc dévie et disperse une lumière polychromatique.

- 2) a. On appelle ce phénomène la dispersion de la lumière monochromatique.
 - b. Ce phénomène est du au fait que les couleurs contenues dans la lumière polychromatique ne vont pas subir la même réfraction à l'intérieur du prisme ; car la valeur de l'indice du verre dépend de la longueur d'onde de la radiation lumineuse.

3)

Classe de 2nd Physique

- 4) Le premier dioptre n'a aucun effet sur le pinceau lumineux, car celui-ci arrive perpendiculairement au premier dioptre $(i = 0^{\circ})$.
- 5) On utilise la deuxième loi de Descartes, mais cette fois-ci écrite pour un dioptre verre-air :

$$n \times \sin i = \sin r$$

or $i = i_2 = 20.0^{\circ}$ ici et n est différent selon la radiation lumineuse considérée :

Pour la radiation rouge, on a $n_R = 1.779$:

$$\sin r_{2R} = n \times \sin i_2 = 1.779 \times \sin 20.0 = 0.608 \dots \text{ et } r_{2R} = \sin^{-1} (0.608 \dots) = 37.5^{\circ}$$

Pour la radiation verte : on a $n_V = 1.800$:

$$\sin r_{2V} = n \times \sin i_2 = 1.800 \times \sin 20.0 = 0.615 \dots \text{ et } r_{2V} = \sin^{-1}(0.615 \dots) = 38.0^{\circ}$$

Pour la radiation bleue : on a $n_B = 1.830$:

$$\sin r_{2B} = n \times \sin i_2 = 1.830 \times \sin 20.0 = 0.625 \dots \text{ et } r_{2B} = \sin^{-1} (0.625 \dots) = 38.7^{\circ}$$

La radiation bleue est la plus réfractée, elle sera donc située la plus bas sur l'écran. Ensuite viendra au dessus la tache verte, puis plus haut la tache rouge (voir schéma).

Exercice n°2: Vrai ou faux: 3pts

- 1) Tout corps chaud émet de la lumière. Le spectre de cette lumière est continu et s'enrichit vers le **Violet** lorsque la température augmente. **(Faux au départ)**
- 2) Une solution colorée ne transmet pas les radiations qu'elle absorbe. Vrai
- 3) Le spectre obtenu lorsque de la lumière est absorbée par une solution est un spectre de **bande** d'absorption. (**Faux au départ**)
- 4) Une gaz absorbe les radiations de mêmes longueurs d'onde que celles qu'il émet lorsqu'il est chaud. **Vrai**
- 5) Un spectre de raie **permet** d'identifier un élément chimique. (Faux au départ)
- 6) Il y a des raies d'absorption dans le spectre de la lumière émise par une étoile car son atmosphère absorbe certaines radiations. (Faux au départ)

Exercice n°3 : Compléter : 2pts

- 1) Le spectre de la lumière émise par un solide chauffé est **continu** et il s'enrichit vers les **courtes** longueurs d'onde lorsque la température du solide augmente.
- 2) Le spectre de la lumière issue d'une étoile permet d'obtenir des informations sur la **température** de l'étoile et sur la composition de **son atmosphère**.
- 3) Dans une lampe à vapeur de sodium, les atomes émettent de la lumière car ils sont excités par une **décharge électrique.** Le spectre de cette lumière est un spectre **discontinu (ou de raies d'émission).**
- 4) Si par contre, de la lumière blanche traverse du sodium gazeux, le spectre obtenu est un spectre **discontinu ou de raies d'absorption**.
- 5) La température d'une étoile bleue est **supérieure** à 6000 °C (température du Soleil).

Exercice n°4: Différents spectres: 3pts

On associe:

1 et a; 2 et f; 3 et b; 4 et e; 5 et d; 6 et c